Qualcomm High Performance Processor Core and Platform for Mobile Applications

Lou Mallia, Senior Staff Engineer, Qualcomm Inc.
The objective

How to get from here To here?

Features

• QVGA screens
• Fancy ring tones
• Limited graphics
• Snapshot-quality camera
• Single-mode modem

Features

• WVGA video
• Surround-sound audio
• MP3 player
• PC gaming-quality graphics
• Professional 12MP photos
• Multi-mode modem
• Bluetooth
• GPS w/ navigation
• Web browsing with DRM
• Secure financial transactions
• Live TV
• WiFi
• ...all running at the same time!!

In short:

How do we get 2000+ DMIPS and still keep the power below 500mW ???

QUALCOMM Application MIPS

<table>
<thead>
<tr>
<th>Year</th>
<th>MSM</th>
<th>MSM</th>
<th>MSM</th>
<th>MSM</th>
<th>MSM</th>
<th>Snapdragon</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>2300</td>
<td>3000</td>
<td>6500</td>
<td>6550</td>
<td>7200</td>
<td>Snapdragon</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Processor*</th>
<th>ARM7</th>
<th>ARM9</th>
<th>ARM9</th>
<th>ARM11</th>
<th>Scorpion</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIPS</td>
<td><20</td>
<td>23</td>
<td>160</td>
<td>250</td>
<td>480</td>
</tr>
</tbody>
</table>

*QUALCOMM implementations
The challenges

• Need more MIPS, MFLOPS, and data bandwidth...
 ▪ Performance approaching the level of PC’s

• ...but also want lower power and smaller form factor
 ▪ Smaller batteries
 ▪ Always on

• Other design team challenges
 ▪ ARMv7 architecture new for design team
 ▪ Architectural complexity
 ▪ Energy-efficient data movement
 ▪ New OS standards
The plan of attack

- Experienced design team
 - 5 generations of low-power RISC processors
- ARMv7 architecture license
 - New design, not a standard product
 - Partner with ARM on evolution
- Target cycle time of 20-25 FO4
 - Using low-power technology
 - Aggressive energy management
 - Design, model, and iterate
Scorpion overview

- Highly integrated design
 - Superscalar CPU
 - Tightly-coupled multimedia engine
 - L1 and L2 caches
 - Built-in DMA channels
 - Debug, trace, and performance monitors
- All the latest ARMv7 architectural features, including:
 - Multimedia enhancements
 - Neon 128-bit Advanced SIMD extensions (ASE)
 - VFPv3 floating-point (32 double-precision registers)
 - FP-16 half-precision floating-point format
 - TrustZone™ security extensions
Scorpion details

- 1.0 GHz (65nm LP technology)
- 2,100 DMIPS and 8,000 MFLOPS
- Power as low as 0.14 mW/DMIP
- Dual-Issue
- Speculative out-of-order issue
- Deeply pipelined (24 FO4)
 - 13-stage load/store pipe
 - 10-/12-stage integer pipes
 - 23-stage floating-point pipe
- Dynamic branch prediction
 - Branch history table (BHT)
 - Branch target address cache (BTAC)
 - 1-cycle penalty on taken branches
 - Global history register (GHR)
 - Subroutine return acceleration (link stack)
Scorpion VeNum multimedia engine (1)

- **VeNum** = "**Vector Numerics**"
 - VFPv3 floating-point
 - Neon advanced SIMD extensions (ASE)
 - 11-stage, 128-bit arithmetic and load/store pipelines
 - VFP operations merged with low-order 64-bits of SIMD
 - Unified multiplier (integer and floating-point)
 - No “trundling” of data (early-out bypass and writeback)
 - Dual-issue, out-of-order execution
 - 128-bit load/store plus arithmetic operation
 - No speculative execution (reduces wasted energy)
 - Separate clock domain from CPU (synchronous)
Scorpion VeNum multimedia engine (2)

- **VFPv3 floating-point**
 - Register file expanded to 32x64-bit
 - Pipelined for both double- and single-precision
 - Including subnormals, NaNs, and multiply-add
 - Divide and square root
 - Precise trapping w/ syndromes on IEEE exceptions
- **Neon advanced SIMD extension (ASE)**
 - Fully-pipelined 128-bit datapath
 - Shares VFP register file (accessed as 16x128-bit)
 - Integer SIMD (16x8-bit, 8x16-bit, 4x32-bit)
 - Floating-point SIMD (4x32-bit single-precision)
 - 8000 MFLOPS
- **FP-16 half-precision support**
 - Doubles load/store bandwidth and saves energy
 - Conversion operations between half- and single-precision
 - Supports both OpenGL ES 2.0 formats
Scorpion memory subsystem

- 32KB/32KB L1 instruction/data caches
- 256KB unified L2 array
 - Cache or TCM
 - Configurable by 64KB bank
 - Multi-port TCM access
 - CPU
 - DMA
 - AXI slave port
 - TCM coherent with L1 data cache
- Internal four-channel DMA controller
- Enhanced AXI-based bus architecture
 - Out-of-order transactions
 - Barrier operations
 - Semaphore operation protocol
 - Three ports
 - 64-bit CPU master port
 - 64-bit DMA master port
 - 64-bit slave port (TCM access)
 - Up to 4.8 GB/s throughput
QUALCOMM energy management (1)

• Technology
 ▪ Low-leakage, multi-Vt CMOS process (65nm, 45nm)
 ▪ Customized by QUALCOMM with multiple fab partners

• Logic design process
 ▪ Low-power front-end design
 — Optimal per-cycle local clock gate for every register in design
 — Unused dataflow stabilized on per-cycle basis
 ▪ VeNum 64-bit SIMD multiply mode
 — Limits peak power of 128-bit operations

• Multiple clock domains (Clock-do-Mania™)
 ▪ Dynamic regional clock gating
 — CPU, SIMD/FPU, L2 cache, trace logic
 ▪ Dynamic domain clock gating
 — Processor core, system interfaces, debug
QUALCOMM energy management (2)

- Dynamic power reduction
 - Selective use of HVT, NVT, LVT devices
 - Low operational voltages
- Leakage power reduction
 - Head/foot switches
 - Ultra-low retention voltage
- Multiple voltage and frequency realms
 - Supported by level shifters and clamps
 - Configured by software
 - Adjusted by hardware
- System-in-package (SIP) stacked memory approach
 - Reduces SDRAM access power
Completion buffer overview

- ARM architecture defines 32 logical general-purpose registers (LGPRs)
 - 15 user-mode GPRs
 - 17 privileged GPRs
- Completion buffer (CB) supports 64 physical registers (PGPRs)
 - LGPRs “renamed” to PGPRs
- Higher performance
 - Allows pipelining of register hazards
 - Allows out-of-order writeback of results
- Lower power
 - Completion buffer IS the register file
 - No need to move from completion buffer to register file as with reorder buffer
 - Early pipeline results written directly to CB
 » No trundling through later pipeline stages
Completion buffer power-saving features

- CAM search
 - Only search PRIV=0 entries in user mode
 - Only search Most recent (MR=1) entries
 - Gate off comparator for PRIV=1 and/or MR=0

- RAM read
 - Only read matched entry if RDY=1
 - RDY=0 entry won’t fire RAM read wordlines
 - Bitlines and outputs unswitched

- Common case for deep pipelines
 - Most source values forwarded from pipeline
 - Not read from completion buffer
Multimedia data processing (structure load/store)

- Multimedia data is a series of **structures**
- Each structure has 1-4 **elements**
 - 1-element structure (e.g., sampled values)
 - 2-element structure (e.g., coordinates)
 - 3-element structure (e.g., color space)
 - 4-element structure (e.g., 3D graphics)
- Dilemma
 - Registers normally filled in-order with sequential bytes
 - First register gets filled first, then next register
 - But, processing algorithms require different order
 - Put all “first elements” in register 1, all “second elements” in register 2, etc.
- Solution – Auto-permuting load/store operations
 - Elements auto-permutated into registers “on-the-fly”
 - Saves energy by avoiding read-permute-write operations
- Example
 - Four, 3-element structures (16-bits per element)
 - Loaded into three doubleword registers (Dn, Dn+1, Dn+2)
Multimedia data processing (pipelined DMA + TCM)

- Leverage Scorpion DMA and TCM
 - Block n written from TCM back to memory by DMA channel “A”
 - Block $n+1$ stored from VeNum register file back to TCM
 - Block $n+2$ processed in VeNum pipeline
 - Block $n+3$ loaded from TCM into VeNum register file
 - Block $n+4$ read from memory into TCM by DMA channel “B”
- TCM and L1 D-cache kept coherent
MPEG-4 encode/decode performance

- Leverages VeNum SIMD engine
 - Cosine transforms
 - Deblocking filters
 - Motion estimation
 - Color space conversion
- Full-duplex video encode/decode
 - Almost 800MHz of headroom
 - Available for OS and other tasks
Graphics vertex processing performance

- Vertex processing gaming application
- Improvement from QUALCOMM ARM1136
 - 3.6x due to clock speed & micro-architecture
 - 6.2x more from VeNum SIMD engine
 - 1.6x more from DMA plus TCM
- Total Scorpion improvement: **35x !!**
- Complements graphics processing unit (GPU)
 - Software chooses where to split the graphics processing chain

![Graphics Vertex Processing (vertices/sec) normalized to QUALCOMM 400MHz ARM1136](diagram)
Scorpion Summary

• Scorpion processor core for mobile applications
 ▪ A unique micro-architectural realization of the ARMv7 architecture
 — Provides maximum energy efficiency at high performance levels
 — Performance up to 2100 DMIPS and 8000 MFLOPS at 1GHz
 » Using 65nm LP technology
 — Power as low as 0.14mW/DMIP
 ▪ The cornerstone of QUALCOMM’s Snapdragon technology platform
 — QUALCOMM creating a variety of Scorpion-based Snapdragon products for different applications
High Performance Mobile Platform Challenges

• Mobile platforms
 ▪ Complex systems with a wide range of applications
 ▪ Trade-offs between generic and customized processing solutions
 ▪ Complex system modeling and architecture trade-offs

• Key challenges
 ▪ Optimizing system bandwidth for multiple concurrent applications
 ▪ Extremely power efficient designs for maximum battery life
 ▪ Minimum footprint to enable small, lightweight mobile form factors
Key Mobile Platform Trends

- Multimedia and connected applications driving need for more MIPS
 - Performance approaching the level of desktop PC’s
- More features in smaller form factors drives need for lower power and higher integration
 - Smaller batteries
 - Always on

Computing Performance Trend

Source: Gartner Dataquest and 3G Today (www.3gtoday.com), 2006
Snapdragon Highly Integrated Platform

- **Always On**
 - Low power consumption through custom CPU and DSP cores
 - All the performance of a laptop in your pocket and much more battery life

- **Industry leading Performance**
 - Superscalar CPU: Scorpion surpasses 2100 DMIPS at 1 GHz speeds
 - Next Generation DSP running at 600MHz
 - High resolution up to XGA support for uncompromised Video and Computing

- **Ubiquitous Connectivity**
 - CDMA, WCDMA, HSPA, GPS, Bluetooth, WiFi, Broadcast (MediaFLO, DVB-H, etc.)
Snapdragon Platform Connectivity

- Cross-bar interconnect to enable simultaneous traffic
- Balanced interconnect enabling any master to access any slave
- Tiered bus structure to off-load low bandwidth/latency tolerant traffic
Snapdragon High Bandwidth AXI Interconnect

- Enhanced AXI architecture
 - Memory barriers, memory type and attributes, ordering
- Configurable full cross-bar implementation
 - Arbiter for each slave interface, parallel R/W data paths
 - Configurable number of masters & slaves, queue depths, pipeline depths
 - Simultaneous access to all slaves
- Integrated performance monitor and bus trace
Snapdragon Bandwidth Modeling Methodology

- **Goal**
 - Optimal interconnect for mobile applications

- **Methodology**
 - Model bus & memory application traffic
 - Characterize various bus and memory alternatives
 - Key criteria includes bandwidth, latency, and utilization

- **Conclusions**
 - System bandwidth was limited by memory bandwidth
 - AXI Bus utilization was less than 50% of theoretical maximum
 - Memory controller enhancements delivered up to 40% system bandwidth improvement without increased AXI bus frequency
Snapdragon Memory Overview

- **Multiple memory interfaces**
 - Stacked LP DDR SDRAM reduces power dissipation and board area
 - External LP DDR SDRAM provides additional bandwidth

- **Highly power optimized external memory controller**
 - Power-down, deep power down, clock stop,
 - Self refresh, auto refresh, directed auto-refresh, temperature adjusted refresh rates
 - IO calibration to adjust IO impedance

- **External bus interface controller (EBI2) supports multiple memory options**
 - NAND, OneNAND/M-systems, burst NOR support

- **Integrated on-chip memory**
 - IMEM reduces off-chip memory accesses
 - CPU and DSP L2 caches can be configured as tightly coupled on-chip memories
Snapdragon Application CPU Subsystem

- Secure vector interrupt controller
 - Configurable up to 64 primary interrupts
 - 8-level Prioritized Interrupts to FIQ/IRQ
 - 32-bit IRQ/FIQ vector address
 - Trustzone™ compliant security mechanism

- Clock and power manager
 - High frequency, low jitter PLL
 - Clock source selection, gating and routing
 - Power collapse and voltage scaling

- RTOS, general purpose & secure timers
Snapdragon Peripheral Subsystem

- Provides connectivity to peripheral devices
 - Direct access from processors
 - Off-loads peripheral traffic from memory bus
 - Round robin arbitration with 5 levels of priority
 - Memory protection for secure peripherals
Snapdragon Display Support

- **RGB LCD Controller**
 - Supports direct-attach LCD panels up to XGA at 60Hz
 - 24 bit RGB outputs, programmable refresh rates and display sizes

- **Mobile Display Digital Interface (MDDI)**
 - High-speed serial communication for displays and sensors
 - Type II (1 Gbps) MDDI interface
 - Displays up to XGA

- **TV Out**
 - Composite and S-Video output supported
 - Integrated 10-bit DAC, NTSC or PAL

- **Auxiliary LCD interface for sub displays**
Snapdragon Multimedia Co-Processors

- **Integrated high-performance, power-optimized multimedia processing engines**
 - Programmable to enable adaptation of emerging standards

- **Multimedia DSP**
 - Custom QUALCOMM designed 600MHz DSP

- **Mobile Graphics Processor**
 - Support for OpenGL ES 2.0
 - 133M pixel/sec or 21M triangles/sec

- **Mobile Video Processor**
 - Video encoding and decoding
 - Supporting H.263, H.264, and MPEG-4

- **Mobile Display Processor**
 - Integrated LCD controller
 - Image Processing (e.g. rotate, scale)

- **Mobile Audio Processor**
 - Wideband stereo CODEC,
 - I2S (Inter-IC Sound),
 - PCM, and Dual Microphone Support

- **Mobile Image Processor**
 - Camera sensor image processor
 - Viewfinder
 - Video and image capture
 - Snapshot processing
 - Encoding
 - Image display, and image processing
Network Gaming Example

- Application requires power efficient data movement
- Crossbar interconnect provides parallel data paths
- Tightly coupled memory is used to store intermediate results
- Separate read and write data paths allow concurrent data transfers
Snapdragon Summary

• Snapdragon platform is a highly integrated, high performance, power optimized mobile solution
 ▪ High performance, power efficient applications processor, multimedia DSP, multimedia applications co-processors
 ▪ Configurable, power efficient interconnect optimized to enable advanced, concurrent mobile applications

• Snapdragon platform enables more advanced applications in smaller, longer lasting, always connected mobile devices
Thank you!